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1 Introduction

Nonlinear partial differential equations (NLPDEs) describe many physical phenomena of the
natural world. They can exhibit complex and often unpredictable behaviour and have wide-
range of applications across various fields of science and engineering (Adeyemo et al., 2023;
Srivastava et al., 2021; Zhang et al., 2023; Motsepa & Khalique, (2020); Benzian, 2023; Gu,
1990; Hirota, 2004; Kudryashov, 2012; Hyder & Barakat, 2020; Wen, 2020; Zhang & Khalique,
2018; Bayrakci et al., 2023). Some common areas where they are encountered include, physics,
engineering, finance and biology. In physics, NLPDEs play a pivotal role in describing the
fundamental laws of physics. For example, the Navier-Stokes equations represent the motion of
fluids and are essential for studying fluid dynamics, turbulence, and weather patterns. Similarly,
the Schrödinger equation in quantum mechanics is a NLPDE that describes the evolution of wave
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functions in time. In biology, these equations help in many biological processes and analyse
phenomena like pattern formation, cell growth, and the spread of diseases.

NLPDEs find extensive use in various engineering disciplines. They are employed to model
phenomena like heat transfer, structural mechanics, fluid flow in porous media, and electro-
magnetic wave propagation. Solving these equations helps in designing efficient systems and
optimizing performance. In finance, the Black-Scholes equation, a well-known NLPDE, is used
in option pricing theory to determine the fair value of financial derivatives.

Solving NLPDEs is a challenging task due to their complex nature. Analytical solutions are
often difficult or impossible to obtain, and numerical methods, such as spectral, finite element,
or finite difference methods, are employed to find approximate solutions. Overall, NLPDEs
provide an effective mathematical framework for understanding and analysing a wide range
of natural and engineered systems, enabling scientists and engineers to make predictions and
develop innovative solutions to real world problems. Therefore, various methods have been
developed, such as, Bäcklund transformation (Gu, 1990), Hirota’s bilinear technique (Hirota,
2004), Kudrayshov’s method (Kudryashov, 2012), Darboux transformation method (Hyder &
Barakat, 2020), bifurcation technique (Wen, 2020; Zhang & Khalique, 2018), sine-Gordon equa-
tion expansion approach (Chen & Yan, 2005), F-expansion approach (Zhou et al., 2018), simplest
equation method (Kudryashov & Loguinova, 2018), tanh-coth approach (Wazwaz, 2018), ansatz
technique (Salas & Gomez, 2018)) and Lie symmetry technique (Olver, 1993; Ovsiannikov, 1982).

Lie symmetry method is a powerful, effective and reliable mathematical tool for finding
exact solutions for NLPDEs. Sophus Lie established this theory during the nineteenth century
to find solutions for NLPDEs. Conservation laws also plays a crucial role in NLPDEs as they
are fundamental principles that govern the behavior of physical systems. These laws express the
concepts of conservation of energy, momentum, and mass. In the context of partial differential
equations (PDEs), conservation laws are typically expressed as mathematical equations that
express how the quantities involved in a physical system change over space and time. These
equations are acquired from fundamental physical principles, such as the laws of physics or
principles of conservation.

The Kadomtsev-Petviashvili (KP) equation (Kadomtsev & Petviashvili, 1970)

(ut + auux + uxxx)x + λuyy = 0 (1)

was discovered in 1970 by two soviet physicists Boris Borisovich Kadomtsev and Vladimir Iosi-
fovich Petviashvili, and was a generalization of the Korteweg and de Vries (KdV) equation. In
Wazwaz (1982) the authors examined the 2D Kadomtsev-Petviashvili Benjamin-Bona-Mahony
(KP-BBM) equation, namely

(ux + ut − a(u2)x − butxx)x + ruyy = 0 (2)

and furthermore put forward two different variants of BBM equation that were constructed in
the KP sense. These two equations are

(ux + ut − a(un)x − butxx)x + ruyy = 0, (3)

and
(ux + ut − a(u−n)x − butxx)x + ruyy = 0, (4)

for n > 1. Numerous travelling wave solutions that included periodic solutions and solitons
were derived for the above equations by employing the tanh and sine-cosine methods (Wazwaz,
1982). Using the expanded mapping method, Abdou (2008) was able to derive various periodic
solutions, triangular wave solutions, and a solitary wave solution. Song et al. (2010) used the
dynamical system bifurcation approach to discover solitary wave solutions. Using the Hirota
bilinear technique, Manafianet et al. (2020) were able to construct new solutions of (2) that
included lump-type solutions.
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Yin et al. (2018) studied the KP-BBM equation

utx + µ1uxx + µ2(uux)x − µ3utxxx + µ4uyy + µ5uzz = 0, (5)

where µ1, . . . , µ5 are nonzero constants. The KP-BBM equation arises in various fields, including
fluid dynamics, combustion, and nonlinear optics. It is a prominent example of a nonlinear wave
equation and exhibits rich dynamical behavior, such as the formation and propagation of solitons.
The lump-wave and breather-wave solutions were discovered through the application of bilinear
forms and Hirota method.

The authors of Hoque et al. (2020) found rogue wave solutions of the KP-BBM equation

utx + utx + αu2xx + βuxxxt + σuyy = 0

by using a variable transformation and the Hirota bilinear technique to the model. They also
employed test functions expressed in a form of a cross-product polynomial expression. Three
types of rogue wave solutions with a manageable model center and three types of rogue wave
solutions with center at origin were effectively obtained. The auxiliary equation approach was
employed to derive the analytical solution of equation (5) in Tariq & Seadawy (2019). In Liu
(2020), the author used a symbolic computation approach to derive the first, second and third-
order rogue wave solutions of the KP-BBM equation (5).

In this work, we consider power law nonlinearity of the KP-BBM equation (5), which we call
generalized (3+1)-dimensional KP-BBM (gnKP-BBM) equation

utx + auxx + b(unux)x + cutxxx + duyy + euzz = 0, (6)

where a, b, c, d, e, n are nonzero constants with n > 0. We perform Lie symmetry analysis of
(6) and find various exact solutions of (6). Moreover, we invoke Ibragimov’s method to derive
its conservation laws. The paper is set out as outlined below: In Section 2 exact solutions of
equation (6) are derived by using the Kudryashov’s technique, Jacobi elliptic cosine technique,
and (G′/G)-expansion technique. In Section 3 conservation laws of (6) are computed by invoking
the Ibragimov’s method. In Section 4 results and discussions are provided. Conclusively, in
Section 5 we provide concluding remarks.

2 Lie symmetries of (6)

First, we find symmetries of the gnKP-BBM equation (6). The vector field

H = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ ξ4

∂

∂z
+ η

∂

∂u

with ξi, i = 1, . . . , 4, η being dependent on (t, x, y, z, u) is a symmetry of (6) if

H [4][utx + auxx + b(unux)x + cutxxx + duyy + euzz] = 0, (7)

whenever utx + auxx + b(unux)x + cutxxx + duyy + euzz = 0. The fourth extension H [4] of H is
defined as

H [4] = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζy

∂

∂uy
+ ζz

∂

∂uz
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ ζyy

∂

∂uyy

+ ζzz
∂

∂uzz
+ ζtxxx

∂

∂utxxx
, (8)

where ζ ′s are given by

ζj1,j2,...,jp = Djp

(
ζj1,j2,...,jp−1

)
− uj1,j2,...,jp−1kDjp

(
ξk
)
, (sum on k) (9)
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and the total differential operator is

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · . (10)

The following eighteen linear PDEs are obtained by expanding (7) and splitting on the derivatives
of u.

ξ1t = 0, ξ1x = 0, ξ1y = 0, ξ1z = 0, ξ1u = 0, ξ2t = 0, ξ2x = 0,

ξ2y = 0, ξ2z = 0, ξ2u = 0, ξ3x = 0, ξ3y = 0, ξ3zz = 0, ξ4t = 0,

ξ4y = 0, d ξ4y + e ξ4z = 0, ξ4z = 0, η = 0.

Solving the above PDEs, we acquire

ξ1 = C4, ξ
2 = C5, ξ

3 = C1z + C2, ξ
4 = −C1e

d
y + C3, η = 0

with Ci, i = 1, ..., 5 considered to be arbitrary constants. Thus, the gnKP-BBM equation (6)
have the five Lie point symmetries listed below:

H1 =
∂

∂t
, H2 =

∂

∂x
, H3 =

∂

∂y
, H4 =

∂

∂z
, H5 = dz

∂

∂y
− ey ∂

∂z
. (11)

2.1 Symmetry reductions and exact solutions

2.1.1 Case 1 : Travelling wave solution using H1, H2, H3 and H4

First, we engage the symmetry H = H1 + H2 + H3 + ρH4 with a constant ρ to transform
the gnKP-BBM equation (6) to a PDE with three independent variables. Four invariants are
obtained as a result of solving the related Lagrange system of symmetry H.

f = t− y, g = t− x, h = z − ρt, θ = u. (12)

Using the above invariants, equation (6) transforms into

aθgg − θfg − θgg + ρθgh +nbθn−1θ2g + bθnθgg + c (ρθgggh − θgggg − θfggg) + dθff + eθhh = 0. (13)

The symmetries of equation (13) are

Y1 =
∂

∂f
, Y2 =

∂

∂g
, Y3 =

∂

∂h
.

Solving the associated Lagrange system of Y = Y1+Y2+κY3 with a constant κ, we get invariants

r = f − h, s = g − κf, ϕ = θ, (14)

which transforms equation (13) into

ϕss
(
κ− 1 + a− dκ2

)
− (1 + ρ+ 2dκ)ϕrs + bnϕn−1ϕ2

s + bϕnϕss − (c+ p)ϕrsss

+ (κ− 1)ϕssss + (d+ e)ϕrr = 0. (15)

The NLPDE (15) has two translation symmetries, viz.,

Q1 =
∂

∂r
, Q2 =

∂

∂s
(16)

and as before, using Q = Q1 + ωQ2, with a constant ω, we achieve invariants

ξ = r − ωs, ϕ = ψ (17)
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that transform NLPDE (15) into the fourth-order nonlinear ordinary differential equation (NLODE)

(ω + κω2 − ω2 + ρω + 2dωκ+ dω2κ2 + d+ e)ψ′′ + (bnω2)ψn−1ψ′2 + (bω2)ψnψ′′

+ cω3(1 + κω + ρ− ω)ψ′′′′ = 0. (18)

Now letting

ψ = F
1
n (ξ), ξ = r − ωs (19)

and substituting ψ in (18) we get the NLODE(
n2α− n3α

)
F 2(ξ)F ′(ξ)2 + n3αF (ξ)3F ′′(ξ) +

(
n2β + n2λ− n3λ

)
F 3(ξ)F ′′(ξ)2

+ n3λF 4(ξ)F ′′(ξ) + F ′(ξ)4
(
µ− 6nµ+ 11n2µ− 6n3µ

)
+
(
3n2µ− 3n3µ

)
F (ξ)2F ′′(ξ)2

+
(
6nµ− 18n2µ+ 12n3µ

)
F (ξ)F ′(ξ)2F ′′′′(ξ) +

(
4n2µ− 4n3µ

)
F (ξ)2F ′(ξ)F ′′′′(ξ)

+ n3µF (ξ)3F ′′′′(ξ) = 0. (20)

Solution of (6) by means of Kudryashov’s method

We invoke Kudryashov’s method (Kudryashov, 2012) to compute exact solution of the gnKP-
BBM equation (6). We presume that the solution of (20) is

F (ξ) =

M∑
i=0

AiQ
i(ξ) (21)

with A1, . . . , AM constants to be found, M > 0, and Q(ξ) solves the Riccati equation

Q′(ξ) = Q2(ξ)−Q(ξ). (22)

It is widely known that the solution of (22) is

Q(ξ) =
1

1 + eξ
. (23)

Applying the balancing method on equation (20), allows us to find M . Consequently, we get
M = 2 and the solution (21) is expressed as

F (ξ) = A0 +A1Q(ξ) +A2Q
2(ξ). (24)

Inserting this value of F (ξ) into (20), invoking (22), thereafter equating the coefficients of the
like powers of Q to zero, gives an algebraic system of equations in A0, A1, A2. Using Maple to
solve these algebraic equations, one potential set of values for A0, A1, A2 is

A0 = 0, A1 =
2c
(
n2 + 3n+ 2

)
(κω − ω + ρ+ 1)

bn2
,

A2 = −
2c
(
n2 + 3n+ 2

)
(κω − ω + ρ+ 1)

bn2
.

Thus, the solution corresponding to the above values can be written as

ψ(ξ) =

{
A1

(
1

1 + eξ)

)
+A2

(
1

1 + eξ

)2
} 1

n

, (25)
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where ξ = (1 + ρ+ ωκ− ω) t + ωx + (ωκ − 1)y − z. Subsequently, the solution of gnKP-BBM
equation (6) is

u(t, x, y, z) =

{
2c
(
n2 + 3n+ 2

)
(κω − ω + ρ+ 1)

bn2 {1 + exp((1 + ρ+ ωκ− ω) t+ ωx+ (ωκ− 1)y − z)}

−
2c
(
n2 + 3n+ 2

)
(κω − ω + ρ+ 1)

bn2 {1 + exp ((1 + ρ+ ωκ− ω) t+ ωx+ (ωκ− 1)y − z)}2

} 1
n

. (26)

Figure 1: Travelling wave profile of solution (26) for certain parametric values

The solution (26) is graphically shown in Figure 1 with different parametric values. The
values in the first figure (left) and second figure (middle) are taken to be κ = 1.1, n = 2,
ω = 0.99, ρ = 0.5, b = 1, c = 0.85, d = 0.5 where t = 1, z = 0.85 and −10 ≤ x, y ≤ 10. The
values in the third figure (right) are κ = 1.1, n = 2, ω = 0.99, ρ = 0.5, b = 1, c = 0.85, d = 0.5
where t = 1, z = 0.85 , y = 0 and −10 ≤ x ≤ 10.

Soliton solution of equation (6) for n = 1

By assuming

u = Q(p), p = a1t+ a2x+ a3y + a4z, (27)

the gnKP-BBM equation (6) with n = 1, transforms into a fourth-order NLODE

AQ′′ −B(Q′2 +QQ′′) + CQ′′′′ = 0, (28)

where A = a1a2 + aa22 + da3 + ea24, B = −ba22 and C = ca1a
3
2. Integration of (28) yields

AQ′ −BQQ′ + CQ′′′ +K1 = 0 (29)

with K1 being a constant. To further integrate this equation, we need to take K1 = 0. Thus,
we obtain

AQ− 1

2
BQ2 + CQ′′ +K2 = 0, (30)

where K2 is an integration constant. Integrating (30) we get

1

2
AQ2 − 1

6
BQ3 +

1

2
CQ′2 +K2Q+K3 = 0 (31)

with K3 being a constant. To obtain soliton solutions from (31) we ought to take K2 = K3 = 0.
Integrating the resultant equation, we obtain

Q′2 = EQ3 + FQ2, (32)
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which on integrating gives

Q(p) =
F

E
sech2

{√
F

2
(p+K4)

}
, (33)

where E = B/(3C), F = −A/C and K4 a constant. This implies that

u(t, x, y, z) = −3ca1a2F

b
sech2

{√
F

2
(p+K4)

}
, (34)

where F = −(a1a2 + aa22 + da3 + ea24)/(ca1a
3
2), p = a1t+ a2x+ a3y + a4z and K4 is a constant.

Figure 2: The profile of the travelling wave solution (34)

The travelling wave solution (34) is graphically illustrated in Figure 2 with different paramet-
ric values. In the first figure (left) and second figure (middle) the values taken are a1 = 40.45,
a2 = 50.05, a3 = 26, a4 = 4, a = 15, b = 20.05, c = −80, d = −240, e = −4, ρ = 5, K4 = −15
where t = 3, z = 3, and −7 ≤ x, y ≤ 7. The values in the second figure (middle) are a1 = 40.45,
a2 = 50.05, a3 = 26, a4 = 4, a = 15, b = 20.05, c = −80, d = −240, e = −4, ρ = 5, K4 = −15
where t = 3, z = 3, and −7 ≤ x, y ≤ 7. The values in the third figure (right) are a1 = 100.45,
a2 = 50.05, a3 = 26, a4 = 4, a = 15, b = 20.05, c = −80, d = −240, e = −4, ρ = 5, K4 = −15
where t = 22, z = 80, y = 12 and −7 ≤ x ≤ 7.

Solution of (31) using direct integration

We now compute exact solution of (31) by applying the direct integration. Equation (31)
can be written as

Q′2 =
B

3C
Q3 − A

C
Q2 − 2K2

C
Q− 2K3

C
, (35)

where K2, K3 are constants. To obtain solution of (35), we assume that α1, α2 and α3 are roots
of cubic polynomial equation

Q3 − 3A

B
Q2 − 6K2

B
Q− 6K3

B
= 0, (36)

with α1 > α2 > α3. Thus, equation (35) can be rewritten as

Q′2 =
B

3C
(Q− α1)(Q− α2)(Q− α3),

whose solution is

Q(p) = α2 + (α1 − α2)cn2

{√
B(α1 − α3)

4C
(p− p0), R2

}
, R2 =

α1 − α2

α1 − α3
, (37)
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with p0, constant and (cn) is known as Jacobi cosine function. As a result, exact solution of
gnKP-BBM equation (6) is

u(t, x, y, z) = α2 + (α1 − α2)cn2


√
b(α3 − α1)

4ca1
(a1t+ a2x+ a3y + a4z − p0),

α1 − α2

α1 − α3

 . (38)

Figure 3: The profile of the periodic solution (38)

The Jacobi cosine function (38) solution is graphically illustrated in Figure 3 with different
parametric values. Values in the first figure (left) and second figure (middle) are taken as
α1 = 100, α2 = 50.05, α3 = −60, ρ0 = 1, a1 = a2 = a3 = a4 = 1 where t = −14, z = 1 and
−7 ≤ x, y ≤ 7. The values in the third figure (right) are α1 = 100, α2 = 50.05, α3 = −60,
ρ0 = 1, a1 = a2 = a3 = a4 = 1 where t = −14, y = 0 , z = 1 and −7 ≤ x ≤ 7.

Solutions of (6) for n = 1 by (G′/G)-expansion technique

We now utilize (G′/G)-expansion technique Wang et al. (2008); Adeyemo & Khalique (2021)
to acquire exact solutions of the gnKP-BBM equation (6). For this reason, we contemplate that
a solution of equation (6) is established as

F (p) =

N∑
i=0

Ai

(
G′(p)

G(p)

)i
, (39)

with Ai being parameters to be found and N is a positive nonzero constant. The function G(p)
solves

G′′ + λG′ + µG = 0 (40)

with µ, λ constants. The balancing procedure (Wang et al., 2008) when applied to (28) gives
N = 2 and so (39) gives

F (p) = A0 +A1

(
G′(p)

G(p)

)
+A2

(
G′(p)

G(p)

)2

. (41)

Substituting (41) into (28), engaging (40) and subsequently comparing the coefficients of powers
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of (G′/G), leads to seven algebraic equations in A0, A1, A2, given by

bA2 + 12ca1a3 = 0,

2bA1A2 + 3bλA2
2 + 4cA1a1a3 + 56cλA2a1a3 = 0,

6dA2a
2
2 + 6A2a1a3 + 3bA2

1a
2
3 + 6aA2a

2
3 + 6bA0A2a

2
3 + 21bλA1A2a

2
3 + 8bλ2A2

2a
2
3

+ 16bµA2
2a

2
3 + 60cλA1a1a

3
3 + 330cλ2A2a1a

3
3 + 240cµA2a1a

3
3 + 6eA2a

2
4 = 0,

dλµA1a
2
2 + 2dµ2A2a

2
2 + λµA1a1a3 + 2µ2A2a1a3 + aλµA1a

2
3 + bλµA0A1a

2
3 + bµ2A2

1a
2
3

+ 2aµ2A2a
2
3 + 2bµ2A0A2a

2
3 + cλ3µA1a1a

3
3 + 8cλµ2A1a1a

3
3 + eλµA1a

2
4 + 16cµ3A2a1a

3
3

+ 14cλ2µ2A2a1a
3
3 + 2eµ2A2a

2
4 = 0,

2dA1a
2
2 + 10dλA2a

2
2 + 2A1a1a3 + 10λA2a1a3 + 2aA1a

2
3 + 2bA0A1a

2
3 + 5bλA2

1a
2
3

+ 10aλA2a
2
3 + 10bλA0A2a

2
3 + 9bλ2A1A2a

2
3 + 18bµA1A2a

2
3 + 14bλµA2

2a
2
3

+ 50cλ2A1a1a
3
3 + 40cµA1a1a

3
3 + 130cλ3A2a1a

3
3 + 440cλµA2a1a

3
3 + 2eA1a

2
4

+ 10eλA2a
2
4 = 0,

dλ2A1a
2
2 + 2dµA1a

2
2 + 6dλµA2a

2
2 + λ2A1a1a3 + 2µA1a1a3 + 6λµA2a1a3 + aλ2A1a

2
3

+ 2aµA1a
2
3 + bλ2A0A1a

2
3 + 2bµA0A1a

2
3 + 3bλµA2

1a
2
3 + 6aλµA2a

2
3 + 6bλµA0A2a

2
3

+ 6bµ2A1A2a
2
3 + cλ4A1a1a

3
3 + 22cλ2µA1a1a

3
3 + 16cµ2A1a1a

3
3 + 30cλ3µA2a1a

3
3

+ 120cλµ2A2a1a
3
3 + eλ2A1a

2
4 + 2eµA1a

2
4 + 6eλµA2a

2
4 = 0,

3dλA1a
2
2 + 4dλ2A2a

2
2 + 8dµA2a

2
2 + 3λA1a1a3 + 4λ2A2a1a3 + 8µA2a1a3 + 3aλA1a

2
3

+ 3bλA0A1a
2
3 + 2bλ2A2

1a
2
3 + 4bµA2

1a
2
3 + 4aλ2A2a

2
3 + 8aµA2a

2
3 + 4bλ2A0A2a

2
3

+ 8bµA0A2a
2
3 + 15bλµA1A2a

2
3 + 6bµ2A2

2a
2
3 + 15cλ3A1a1a

3
3 + 60cλµA1a1a

3
3

+ 16cλ4A2a1a
3
3 + 232cλ2µA2a1a

3
3 + 136cµ2A2a1a

3
3 + 3eλA1a

2
4 + 4eλ2A2a

2
4

+ 8eµA2a
2
4 = 0.

Using Maple, solution to the above equations is

A0 = −da
2
2 + a1a3 + aa3a

2
3 + cλ2a1a

3
3 + 8cµa1a

3
3 + ea24

ba23
,

A1 = −12λca1a3
b

, A2 = −12ca1a3
b

.

Thus, we can write down the solutions of gnKP-BBM equation (6) as given in the following
three cases:

1. For λ2 − 4µ > 0, we secure

u(t, x, y, z) =A0 +A1

{
− λ

2
+ δ

(
C1 sinh (δp) + C2 cosh (δp)

C1 cosh (δp) + C2 sinh (δp)

)}
+A2

{
− λ

2
+ δ

(
C1 sinh (δp) + C2 cosh (δp)

C1 cosh (δp) + C2 sinh (δp)

)}2

(42)

with p = a1t+a2x+a3y+a4z, δ = 1
2

√
λ2 − 4µ, C1, C2 being constants. These are the hyperbolic

function solutions of (6).
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Figure 4: The profile of the hyperbolic function solution (42)

The hyperbolic function solution (42) is portrayed graphically in Figure 4 with distict values.
The values in the first figure (left) and second figure (middle) are taken to be C1 = 1, C2 =
1.5, λ = 0.5, µ = 0.05, a1 = a2 = a3 = a4 = 1, a = b = c = d = e = 1, where z = 1, y = 1
and −10 ≤ t, x ≤ 10. The values in the third figure (right) are C1 = 1, C2 = 1.5, λ = 0.5, µ =
0.05, a1 = a2 = a3 = a4 = 1, a = b = c = d = e = 1, where z = 1, y = 1 and −200 ≤ x ≤ 200 for
t = 0, t = 40, t = 100.

2. For λ2 − 4µ < 0, we get

u(t, x, y, z) =A0 +A1

{
− λ

2
+ δ

(
−C1 sin (δp) + C2 cos (δp)

C1 cos (δp) + C2 sin (δp)

)}
+A2

{
− λ

2
+ δ

(
−C1 sin (δp) + C2 cos (δp)

C1 cos (δp) + C2 sin (δp)

)}2

, (43)

with p = a1t+ a2x+ a3y + a4z, δ = 1
2

√
4µ− λ2, C1, C2 constants. These are the trigonometric

function solutions of (6).

Figure 5: The profile of the trigonometric function solution (43)

The trigonometric function solution (43) is shown graphically in Figure 5 with different
values. The values in the first figure (left) and second figure (middle) are C1 = 1, C2 = 1.5, λ =
0.5, µ = 0.05, a1 = −8, a2 = 0.20, a3 = 0.15, a4 = 5, a = 0.25, b = 0.10, c = 0.14, d = 0.55, e =
0.45 where z = 1, y = 1, and −200 ≤ t, x ≤ 200. The values in the third figure (right) are
C1 = 1, C2 = 1.5, λ = 0.5, µ = 0.05, a1 = −8, a2 = 0.20, a3 = 0.15, a4 = 5, a = 0.25, b = 0.10, c =
0.14, d = 0.55, e = 0.45 where z = 1, y = 1, t = 0 and −200 ≤ x ≤ 200.

3. For λ2 − 4µ = 0, we obtain

u(t, x, y, z) = A0 +A1

{
−λ

2
+

C2

C1 + pC2

}
+A2

{
−λ

2
+

C2

C1 + pC2

}2

(44)

with p = a1t+ a2x+ a3y + a4z, C1, C2 constants. This is the rational function solution of (6).
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Figure 6: The profile of the rational function solution (44)

The rational function solution (44) is depicted graphically in Figure 6 with unalike values.
The values in the first figure (left) and second figure (middle) are C1 = 1, C2 = 1.5, λ = 0.5, µ =
0.05, a1 = 1, a2 = 2, a3 = 1, a4 = 1, a = b = c = d = e = 1 where z = 1, y = 1 and
−200 ≤ t, x ≤ 200. The values in the last figure (right) are C1 = 1, C2 = 1.5, λ = 0.5, µ =
0.05, a1 = 1, a1 = 2, a3 = 1, a4 = 1, a = b = c = d = e = 1 where t = 10, y = 1,z = 1 and
−5 ≤ x ≤ 5.

2.1.2 Case 2 : Symmetry reductions of (6) using H5

We now make use of the symmetry H5. The related Lagrange system of symmetry H5 gives the
following invariants:

f = t, g = x, h = ey2 + dz2, W = u. (45)

Using these invariants the gnKP-BBM equation (6) transforms to

Wfg + aWgg + nbWn−1W 2
g + bWnWgg + cWgg + 4edWhhh+ 4edWh = 0. (46)

Equation (46) has symmetries that include the two translation symmetries, namely,

G1 =
∂

∂f
, G2 =

∂

∂g
.

The symmetry G = G1 + εG2, where ε is a constant, gives two invariants

τ = f − εg, ψ = W (47)

and these invariants, transfroms equation (46) into a second-order NLODE, given as

(cε+ aε− 1) εψψ′′ + nbε2ψnψ′2 + bε2ψn+1ψ′′ = 0. (48)

Thus, we have successfully performed symmetry reductions on the gnKP-BBM equation (6) and
reduced it to a second-order NODE.

3 Conservation laws of (6)

Using the Ibragimov’s method Adeyemo & Khalique (2007), we construct conservation laws of
(6). This theorem can be applied to any system of differential equations and does not require
an existence of a Lagrangian. To begin, we write down adjoint equation of (6) as

F ∗ ≡ δ

δu
{v(utx + auxx + b(unux)x + cutxxx + duyy + euzz} = 0. (49)
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In this case

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
+D2

z

∂

∂uzz
+DtDx

∂

∂utx
+DtD

3
x

∂

∂utxxx
(50)

is the Euler operator and Dt, Dx, Dy and Dz are given as

Dt =
∂

∂t
+ vt

∂

∂v
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ vtt

∂

∂vt
+ vtx

∂

∂vx
+ · · · ,

Dx =
∂

∂x
+ vx

∂

∂v
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ vxx

∂

∂vx
+ vxt

∂

∂vt
· · · ,

Dy =
∂

∂y
+ vy

∂

∂v
+ uy

∂

∂u
+ uyy

∂

∂uy
+ uyt

∂

∂ut
+ vyy

∂

∂vy
+ vyt

∂

∂vt
· · · ,

Dz =
∂

∂z
+ uz

∂

∂u
+ vz

∂

∂v
+ uzz

∂

∂uz
+ vzz

∂

∂vz
+ uzt

∂

∂ut
+ vzt

∂

∂vt
· · · .

The adjoint equation (49) can be written as

F ∗ ≡ vtx + avxx + bunvxx + dvyy + evzz + cvtxxx = 0. (51)

We now consider equation (6) and its adjoint (51). The Lagrangian of equation (6) is given as

L = v(utx + auxx + b(unux)x + duyy + euzz) + cvtxuxx. (52)

Recall that five Lie point symmetries (11) are admitted by (6). Therefore, using the formula in
Adeyemo & Khalique (2007), we compute the related conserved vectors for the given Lagrangian.
For the corresponding symmetries, we derive the conserved vectors of (6). These are

T t1 = evuzz + dvuyy + bnun−1vux
2 + avuxx + bunvuxx +

1

2
vxut +

1

4
cvxxxut

+
1

2
vutx −

1

4
cvxxutx +

1

4
cvxutxx +

3

4
cvutxxx,

T x1 = avxut − bnun−1vuxut + bunvxut +
1

2
utvt − avutx − bunvutx −

1

2
cutxvtx

+
1

4
cvtutxx +

3

4
cutvtxx −

1

2
vutt −

1

4
cvxxutt +

1

2
cvxuttx −

3

4
cvuttxx,

T y1 = dvyut − dvuty,
T z1 = evzut − evutz;

T t2 =
1

2
uxvx −

1

2
vuxx −

1

4
cuxxvxx +

1

4
cvxuxxx +

1

4
cuxvxxx −

1

4
cvuxxxx,

T x2 = evuzz + dvuyy + auxvx + bunuxvx +
1

2
uxvt +

1

4
cuxxxvt +

1

2
vutx

− 1

4
cvxxutx −

1

2
cuxxvtx +

1

2
cvxutxx +

3

4
cuxvtxx +

1

4
cvutxxx,

T y2 = dvyux − dvuxy,
T z2 = evzux − evuxz;

T t3 =
1

2
uyvx −

1

2
vuxy −

1

4
cuxyvxx +

1

4
cv,xuxxy +

1

4
cuyvxxx −

1

4
cvuxxxy,

T x3 = auyvx − bnun−1vuyux + bunuyvx − avuxy − bunvuxy +
1

2
uyvt +

1

4
cuxxyvt

− 1

2
vuty −

1

4
cvxxuty −

1

2
cuxyvtx +

1

2
cvxutxy +

3

4
cuyvtxx −

3

4
cvutxxy,

T y3 = evuzz + duyvy + bnun−1vux
2 + avuxx + bunvuxx + vutx + cvutxxx,

T z3 = evzuy − evuyz;
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T t4 =
1

2
uzvx −

1

2
vuxz −

1

4
cuxzvxx +

1

4
cvxuxxz +

1

4
cuzvxxx −

1

4
cvuxxxz,

T x4 = auzvx − bnun−1vuzux + bunuzvx − avuxz − bunvuxz +
1

2
uzvt +

1

4
cuxxzvt

− 1

2
vutz −

1

4
cvxxutz −

1

2
cuxzvtx +

1

2
cvxutxz +

3

4
cuzvtxx −

3

4
cvutxxz,

T y4 = duzvy − dvuyz,
T z4 = euzvz + dvuyy + bnun−1vux

2 + avuxx + bunvuxx + vutx + cvutxxx;

T t5 =
1

2
dzuyvx −

1

2
eyuzvx +

1

2
eyvuxz −

1

2
dzvuxy +

1

4
ceyuxzvxx −

1

4
cdzuxyvxx

− 1

4
ceyvxuxxz +

1

4
cdzvxuxxy −

1

4
ceyuzvxxx +

1

4
cdzuyvxxx +

1

4
ceyvuxxxz

− 1

4
cdzvuxxxy,

T x5 =nbeyun−1vuzux − bdnzun−1vuyux − aeyuzvx − beyunuzvx + adzuyvx

+ bdzunuyvx + aeyvuxz + beyunvuxz − adzvuxy − bdzunvuxy −
1

2
eyuzvt

+
1

2
dzuyvt −

1

4
ceyuxxzvt +

1

4
cdzuxxyvt +

1

2
eyvutz +

1

4
ceyvxxutz −

1

2
dzvuty

− 1

4
cdzvxxuty +

1

2
ceyuxzvtx −

1

2
cdzuxyvtx −

1

2
ceyvxutxz +

1

2
cdzvxutxy

− 3

4
ceyuzvtxx +

3

4
cdzuyvtxx +

3

4
ceyvutxxz −

3

4
cdzvutxxy,

T y5 = devuz + dezvuzz − deyuzvy + d2zuyvy + deyvuyz + bdnzun−1vux
2 + adzvuxx

+ bdzunvuxx + dzvutx + cdzvutxxx,

T z5 = dezvzuy − e2yuzvz − devuy − dezvuyz − deyvuyy − benyun−1vux2 − aeyvuxx
− beyunvuxx − eyvutx − ceyvutxxx.

4 Results and discussion

In this research, firstly we introduced the gnKP-BBM equation with power law nonlinearity
(6) and thereafter investigated it using Lie group analysis. Utilizing its translation symmetries
we performed symmetry reductions which led to the fourth-order NLODE (20). Kudryashov’s
method was then applied to (20), which gave us an exact solution to (6), that is presented for
the first time. Moreover, conservation laws were also derived for the first time with the help of
Ibragimov’s theorem.

Secondly, this study investigated the exact solutions of (6) for n = 1. To achieve this,
symmetry reductions, direct integration, the Jacobi cosine approach and the (G′/G) expansion
method were used. According to our research, all solutions obtained of (6) for n = 1 have never
been presented before in the literature and are given here for the first time. To the best of
our knowledge, no one has addressed exact solutions for equation (6) when n = 1 using these
methods.

Furthermore, the dynamics of the exact solutions obtained in this work were depicted using
suitable graphs which were also discussed in detail. See Figures 1-6.

5 Conclusions

Through the use of various techniques, few researchers have identified a few different types of
solutions to the equation (6) which is an equation for small amplitude long waves in shallow
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water that mainly move in the x direction, but in this most recent research, we have discovered
more general and new solutions for equation (6). We obtain exact solutions for equation (6)
by the use of Lie symmetry reductions, direct integration, Kudryashov’s method, Jacobi cosine
approach and the (G′/G)-expansion method. Moreover, we derived conservation laws of (6) by
using Ibragimov’s theorem. These conversation laws are linked respectively to the conserva-
tion of energy and momentum which holds broad significance across scientific and engineering
disciplines.
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